

Making roads safer for drivers, passengers, and pedestrians

VRU solution – pitch deck

Legal notice

This investor deck contains forward-looking statements within the meaning of the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. All statements other than statements of historical fact in this deck are forward-looking statements, including but not limited to, the ability of SaverOne's technology to substantially improve the safety of drivers; SaverOne's planned level of revenues and capital expenditures; SaverOne's ability to market and sell its products; SaverOne's plans to continue to invest in research and development to develop technology for both existing and new products; SaverOne's intention to advance its technologies and commercialization efforts; SaverOne's plan to seek patent, trademark and other intellectual property rights for our products and technologies in the United States and internationally, as well as its ability to maintain and protect the validity of its currently held intellectual property rights; SaverOne's expectations regarding future changes in its cost of revenues and our operating expenses; interpretations of current laws and the passage of future laws; acceptance of SaverOne's business model; the ability to correctly identify and enter new markets; the impact of competition and new technologies; general market, political and economic conditions in the countries in which SaverOne operates; projected capital expenditures and liquidity; SaverOne's intention to retain key employees, and our belief that we maintain good relations with all of its employees; any resurgence of the COVID-19 pandemic and its impact on SaverOne's business and industry; security, political and economic instability in the Middle East that could harm SaverOne's business, including due to the current war between Israel and Hamas; and other risks and uncertainties, including, but not limited to, the risks detailed in the Company's Annual Report on Form 20-F filed with the U.S. Securities and Exchange Commission (the "SEC") on March 25, 2024 and in subsequent filings with the SEC. The Company's filings are available on its website at www.sec.gov. These forward-looking statements involve known and unknown risks and uncertainties and are based on current expectations, assumptions, estimates and projections about the Company and the industry. The Company undertakes no obligation to update forward-looking statements to reflect subsequent occurring events or circumstances, or to changes in its expectations, except as may be required by law. Although the Company believes that the expectations expressed in these forward-looking statements are reasonable, it cannot assure you that its expectations will turn out to be correct, and investors are cautioned that actual results may differ materially from the anticipated results.

We are SaverOne

Our mission is to make roads safer for drivers, passengers, and pedestrians alike – through cellular network-based technological solutions

2 products

Vulnerable Road User safety solution

Detection & localization of Vulnerable Road Users (VRUs) outside the vehicle even in non-line-of-sight (NLOS) and adverse weather conditions through mobile signals

Focus of this pitch

In-cabin driver distraction prevention

Driver safety solution designed to combat distracted driving by identifying and monitoring cell phones located in the driver's vicinity and selectively blocking distracting apps

Our experienced leadership team

Jacob Tenenboim	Ori Gilboa	Yossi Cohen	Yoav Zilber	Aviram Meidan	Omri Hagai	
Chairman Chief Executive Of		Chief Operating Officer & Co-Founder	Head of Business Development	Vice President Research & Development	Chief Financial Officer	
35+ years in technology management & entrepreneurship25+ years in automotive & retail industries		20+ years in leading global operations in high-tech areas	20+ years in international marketing & business development	20+ years in automotive product development	10+ years of experience in financial management of public companies	
Among his exits are:	CEO JR/DUTYFREE	Senior Manager of Program Management & Business	VP Business Development	VP R&D	Director of Finance	
★Insur eWorx [™]	CEO בגב 🌣	Operations	Africa VITAL environment	CTO Telit wireless solutions	BrainsWay	
		SOLUTIONS	CEO	Senior Manager	Disclosure & Reporting controller	

Vulnerable road users (VRU) require special attention & protection

Non-motorised road users such as pedestrians (especially children), cyclists, motor-cyclists and persons with disabilities/ reduced mobility & orientation are unprotected in case of collisions

Despite developments in vehicle safety, vulnerable road users (VRUs) are still at risk today

Distribution of deaths by road user type, globally

> VRUs account for ~50% of fatalities
 > Every 53 seconds a VRU dies on the road
 > Already slight injuries cost ~6.3k USD per injury²
 > Serious injuries cost ~140k USD per injury²
 > ~5bn USD total injury cost in Germany annually³

- 1. Occupants of vehicles carrying more than 10 people, heavy goods vehicles and "other" users
- 2. Average cost of road-traffic injuries in Germany
- 3. ~160k VRU injuries in road traffic in Germany 2019

While the industry is aware of the issue, current solutions cannot detect VRUs in non-line-of-sight, posing a safety challenge

... cannot detect VRUs in non-line-of-sight

Detection of VRUs is a big problem in bad weather and darkness current sensor technology cannot address these issues sufficiently

Former VP. Head of LiDAR Segment at Tier-1 supplier

1. Non-line-of-sight

Our radiofrequency-based VRU solution solves this issue & makes roads safer for everyone

Optional for truck OEM

Our radiofrequency-based sensor could even detect rear overtaking vehicles or VRUs in the future

SaverOne algorithm calculates vector of movement of truck and issues information to vehicle ECU

RF signals captured by SaverOne ADAS sensor

Adverse weather conditions & trailer block line of sight A truck changes lanes to pass another truck in adverse weather

RF ray power scale index

-107.7 dBm

The VRU solution can specifically detect VRUs around corners or hidden by obstacles – and in the future, also rear blindspots

Main use cases

VRUs around corners

Pedestrian approaching road from around the corner, not visible to the driver and not detectable by other sensors

VRUs behind obstacles

Pedestrian emerging between 2 parked cars, not visible to the driver and only detectable by strategically low or highly placed LiDAR systems

Future use case

Blind spot detection

Detection of cars and VRUs in blindspots (especially relevant for trucks or in poor weather/ lighting)

No other sensor set-up today can do this – our solution is required to detect VRUs in non-line-of-sight

1. Only basic detection of (moving) VRUs between cars through low-positioned sensors

2. Especially relevant for trucks, given limited availability of rear sensors and large trailers

The VRU solution in a nutshell

Technical details

Detection, classification, localization, tracking of VRUs and notification of driver in case of potential collision

Reception and analysis of radiofrequency signals¹

Operating range up to 150 meters

Capacity Up to 50 phones

High accuracy with <1 meter error²

1. Cellular & Wifi supported (700-3,800 MHz, 5800-5900 MHz BLE)

2. Simulation conducted in Wireless Insite

High Accuracy: error <1 meter

Error of algorithm in predicting pedestrian position depends on distance from the car (20-50m) and obstacle between pedestrian and car (glass, concrete) – depicted relative to body size, details in appendix

The VRU solution in a nutshell

Technical details

Detection, classification, localization, tracking of VRUs and notification of driver in case of potential collision

Reception and analysis of radiofrequency signals¹

Operating range up to 150 meters

Capacity Up to 50 phones

High accuracy with <1 meter error²

1. Cellular & Wifi supported (700-3,800 MHz, 5800-5900 MHz BLE)

2. Simulation conducted in Wireless Insite

High Accuracy: error <1 meter

Error of algorithm in predicting pedestrian position depends on distance from car (20-50m) and obstacle between pedestrian and car (glass, concrete) – depicted relative to body size, details in appendix

Our VRU solution addresses a new market of ~1.5 bn USD in 2035

1. Including passenger cars, light commercial vehicles, truck, busses, robo-taxis

2. TAM = Total addressable market

We address core pain points of our customers

	🥑 s	trong applicability for customer 🛛 💛 Limited appli	Limited applicability for customer 🛛 🗙 No applicability	
Core value proposition	Passenger car OEMs		Robo-taxis	
Enhanced safety, improving value and selling proposition				
Potential improved safety ratings/ regulatory benefits ¹				
Reduced risk of liability claims ²				
Lower insurance cost				
Optimized vehicle utilization (driving speed of AD ³ potentially limited due to safety)	×			
Projected take rates from expert survey ⁴	Entry Volume Premium 10-30% 20-40% 50-80%	40-80%	~80%	
 If testing procedures and/or scoring criteria are adjusted In autonomous driving modes 				

- AD = Autonomous Driving
- 4. Based on Expert interview with n=24 experts

Target customers show a high willingness to pay for a new sensor technology like ours

Willingness to pay by customer type, in USD

""

"If there was a working VRU detection sensor, there would for sure be a willingness to pay, I would estimate ~50 USD"

– Former Chief Safety Officer at premium OEM

"If performance, accuracy and reliability are proven, I believe OEMs would be willing to pay ~100 EUR for such a sensor"

> - Former VP, Head of LiDAR Segment at Tier-1 supplier

The VRU solution could save insurance claim costs of up to ~260+ USD over the lifetime of a passenger car

Insurance claim cost could be saved on average over the lifetime of a vehicle from avoidance of collisions with VRUs

0.064 0.74%

Collision claims per vehicle p.a.¹

Claims Over involving VRU lifetime

12y

Average spend per claim

45.3k

Potential upsides

Potential value of up to ~ 1,875 USD on average for taxis generally given higher utilization and even further upside for robotaxis due to no breaks required

Potential value of up to ~8,400 USD on average in the US

given higher cost for VRU accidents with large tail towards high-end (about 1/3 of accidents with costs >600k USD)

cruise e.g., ~8-12mn USD settlement with a pedestrian hit by robotaxi

1. p.a. = per annum

Note: Rounding of individual numbers

8 Source: Global tier-1 Management Consultancy

There is no direct competition – our solution is the only one that protects VRUs even if they do not have an app

		SAVERONE	Competitor 1	Competitor 2
Pa ssive reception of signals	Independent of active communication between two media	Passive radio- frequency signal detection	Active V2X app-based communication	Active V2X app-based communication
Works without an app for the VRU	Independent of installation of specific app or software at VRU-end	No installation required on VRU-end	e.g., specific app, maps apps, or firmware package ¹	Add-on integration into location-based 3 rd party apps
Integrated into vehicle safety features	Could be integrated into specific ADAS features e.g., automatic emergency braking	Deep integration with other ADAS sensors	Phone-based warning function, potentially with ADAS integration ²	Phone-based warning function only (no ADAS integration)
On track to scale	Active development with tangible plan for strong roll-out	Currently in MVP development	Pilot phase, testing ended in 2020 due to lack of data/ user coverage	P Low scale, given reliance on SDK ³ integration

1. Based on radio transmitter and receiver

2. Published as communication with engine ECU

3. Software development kit

We have strong ambitions and estimate a revenue potential of >480m USD by 2035

Business plan

Revenues, in USDm

SAVERONE

1. From premium passenger cars and commercial vehicles

- 2. Measured in EBITDA
- 3. Based on cash flows until 2035, excl. terminal value. WACC of 8.5% used for discounting cashflows

We will spin-off the VRU business into a separate entity – and are looking for a financial investment to support product development

1. Will contribute technical expertise (e.g., chip design, sourcing, industrialization, manufacturing, logistics), commercial expertise (e.g., OEM relationships, sales channels, automotive grade process excellence), financing

We are ready to start, and will get the product MVP to customers in 2025

1. Expert interview

We need ~35m USD to develop the commercial VRU solution and win first customers

Capital need until product commercialization 2028

Investment highlights in a nutshell

1 st

ADAS sensor to look beyond line-of-sight

~30bn USD

Annual economic cost of VRU injuries in US & EU¹

>50 USD

Willingness to pay by OEM customers²

1.5bn USD

Market opportunity

>485m USD

Revenue opportunity 2035

~59m USD

EBITDA opportunity 2035

. Based on VRU injuries and related economic cost in road traffic in Germany 2022 (extrapolated to EU) and US

2. As of expert survey

Our product is addressing the market for active safety and ADAS/AD

		Passive Safety			Safety	ADAS/Autonomous Driving (AD)		
Ċ	Main objective	Mitigation of impact of collisions for occupants and VRUs		Avoidance of collisions		Enhanced comfort		
	SAE levels	n/a		0		12	2+ 3 4 5	
0	Examples of systems		Airbag		Automatic emergency braking system Car-to-Car		Adaptive Cruise Control	
_	Occupants		Safety belt		Driver Distraction Monitoring		Lane Centering	
		1	Chassis construction	00	Blind Spot Detection			
			Fuel Pump Shut-Off Switch		Electronic stability program			
Â	Examples of systems	1	Chassis construction to reduce impact		Automatic emergency braking system Cyclist & Pedestrian		L2+ or L4 in urban environments	
	VRU		eCall system ¹					

1. For both VRUs and occupants

Focus of our VRU solution

Our VRU solution addresses the most important unsolved problems in vehicle safety

Largest unsolved problems in vehicle safety today, (5 being highest)

Driver distraction and inattentionImage: Safety assist (active safety and ADAS / AD)Vulnerable road user protection2.2Substance-impaired driving1.9Driver and passenger protection1.8Road infrastructure1.5Cybersecurity0.9Emergency Response0.4

Our VRU solution addresses the most important problems in vehicle safety through:

Improving existing ADAS systems & Providing resilient VRU detection

